UL 2596 Test Report for Elven Technologies Battery Enclosure: FireGuard Pro

Project Details

Report Number: ET-UL-2596-2024-001

Revision: 1.0

Prepared By: Elven Technologies

Address: 2155 Pantages Cir, Rancho Cordova, CA 95670, USA Report Authors: Sandro Chubinidze, Vamekh Kherkheulidze

Project Name: Battery Enclosure Safety Program

Test Standard: UL 2596

Testing Laboratory: Underwriters Laboratories, Northbrook, IL

Testing Team: Bret Tittle, Thomas Buzzi

Testing Date: July 16, 2024 Report Date: August 6, 2025

Approval: Sandro Chubinidze, Vamekh Kherkheulidze

Scope of Report

The document provides detailed analysis of the Torch and Grit test on FireGuard Light in accordance with the UL 2596 standard *Battery Enclosure Thermal Runaway Barriers*. The objective is to verify the material's ability to maintain structural integrity and limit heat/pressure transmission during extreme thermal-runaway events in lithium-ion cells.

Sample Specification

Sample ID: TAG CThickness: 5 mm

Density / Basis Weight: 0.62g cm⁻³

Flexibility: noColour: Black

Test Procedure - Torch and Grit Test

- 1. Expose the specimen to a 1200 °C propane flame for 15 s, immediately followed by abrasive grit-blast (SiC, 140 kPa) for 5 s.
- 2. Repeat up to 10 cycles or until the sample breaches.
- 3. Continuously record time-to-breach and back-face temperature.

Test Results

Sample	Torch Temperature and Power Set Point	Torch Dwell Time	Grit Dwell Time	Sample Breach (Y/N)	Approximate Time to Sample Breach (s)	Temperature Measurement at Breach (°C)	Observations (Note: Temperature measurements charts are included in Addendum "A")
TAG B TEST 2	1200 °C 3 KW	15s	5s	Yes	76	217	Breach at cycle 4 grit
TAG B TEST 3	1200 °C 3 KW	15s	5s	Yes	68	356	Breach at cycle 4 torch
TAG B TEST 4	1200 °C 3 KW	15s	5s	Yes	69	34.5	Breach at cycle 4 torch
TAG B TEST	1200 °C 3 KW	15s	5s	Yes	76	124	Breach at cycle 4 grit
TAG C TEST	1200 °C 3 KW	15s	5s	No	N/A	N/A	No Breach after 10 cycles
TAG C TEST	1200 °C 3 KW	15s	5s	No	N/A	N/A	No Breach after 10 cycles
TAG C TEST	1200 °C 3 KW	15s	5s	No	S N/A	N/A	No Breach after 10 cycles
TAG C TEST	1200 °C 3 KW	15s	5s	No	N/A	N/A	No Breach after 10 cycles
TAG C TEST 5	1200 °C 3 KW	15s	5s	No	N/A	N/A	No Breach after 10 cycles
TAC DITECT	4000 80 0 100				N1/0	\$1/0	No Breach ofter 10 cycles
1	1200 °C 3 KW	15s	58	No	N/A	N/A	
TAG D TEST 2	1200 °C 3 KW	15s	5s	No	N/A	N/A	No Breach after 10 cycles
TAG D TEST 3	1200 °C 3 KW	15s	5s	No	N/A	N/A	No Breach after 10 cycles
TAG D TEST 4	1200 °C 3 KW	15s	5s	No	N/A	N/A	No Breach after 10 cycles
TAG D TEST 5	1200 °C 3 KW	15s	5s	No	N/A	N/A	No Breach after 10 cycles

Key Observations

- Completed all 10 Torch & Grit cycles without breach, preventing flame-through or hotgas penetration to the pack exterior.
- Cool protected side: Cold-face stayed below ~100 °C during exposure, preserving nearby polymers (housings, wire looms, seals) and reducing risk of secondary ignition.
- **Erosion tolerance:** Grit impingement produced only superficial hot-face pitting; **no delamination** or through-thickness damage observed.
- Edge and hardware robustness: Clamped edges, seams, and fastener zones remained intact; any damage localized to the primary exposure area—no fragment was ejected.
- Supports venting strategy: Allows gas pressure to be managed via designed vents while blocking direct flame egress, aiding "no external flame" objectives.
- **Serviceable integration:** Cuttable and lightweight for field fit-up; compatible with adhesives, mechanical fastening, and edge sealing.

Conclusion

FireGuard Pro (Sample C) demonstrated full-cycle TaG endurance with a cool protected side and no flame-through, making it a strong primary hot-face liner for battery systems. It supports pack designs that rely on controlled venting while blocking direct flame egress and maintaining integrity at edges and fasteners.

Practical use cases

- **Build new enclosures (any size / power):** Fabricate pack lids, sidewalls, and partitions for small modules up to high-power packs without changing your venting strategy.
- Add internal barriers to existing batteries: Retrofit liners or fire-breaks between modules, around busbars/cables, and at passthroughs to limit propagation.
- Create transport/storage containers: Line or construct containers and vault panels for cells, modules, or full packs where direct flame and grit exposure are credible.
- **Shape or mold to fit:** Cuttable, formable, and moldable into complex geometries; compatible with adhesive bonding, mechanical fasteners, and edge/seam sealing for durable installs.

